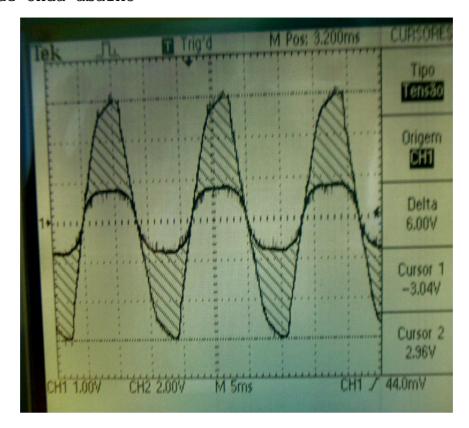
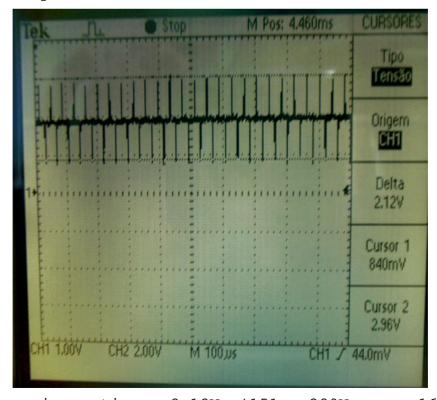


Mini-Dimmer e Dimmer Dexter com Reatores Eletrônicos

Foi constatada queima de diversos canais de Mini-Dimmers, assim como de Dimmers de Potência, quando ligados a reatores eletrônicos para lâmpadas halógenas dicróicas (reator MG modelo DIC-50). Em ambos os casos a rede elétrica era de 220 Vac. Então, para teste, foi montado o circuito abaixo. Note que o divisor resistivo é para adequar a amplitude do sinal à entrada de um osciloscópio Tektronix TDS-220. Este divisor efetua uma atenuação de 44dB (151x).

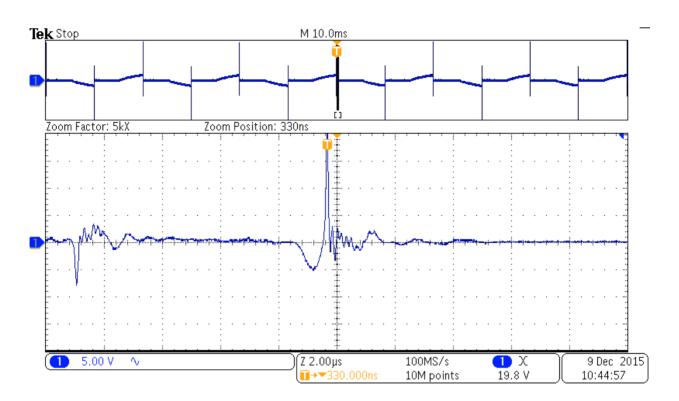


Abaixo temos a forma de onda antes da conexão do reator eletrônico. Note que para obtenção de 220Vac foi utilizado um pequeno transformador 110**Bà**220, por isso a forma de onda possui uma distorção harmônica apreciável (nesta situação o trafo estava sem carga).



Note que a amplitude, neste caso, é de 4,44Vpp*151 = 670Vpp. Daí resulta em 335Vp, ou 335/1,4142 = 237Vca. Este valor está dentro dos limites admissíveis para os dimmers (até 250Vca).

Já ao ligar o reator eletrônico com carga de 50W surgiu a forma de onda abaixo:



Agora a tensão pico a pico vai a 6Vpp*151 = 906Vpp, ou seja, 453Vp. Daí resulta que a tensão RMS é de 453/1,4142 = 320Vca. Ou seja, a tensão RMS excede largamente o limite dos dimmers (até 250Vca), devido aos picos gerados pelo reator eletrônico. Além disso, submete os equipamentos a constantes picos de alta amplitude e freqüência. Abaixo os picos com uma varredura no scope mais rápida:

Note que os picos atingem 2,12Vpp*151 = 320Vpp, ou 160Vp.

No caso do reator THED-50W/220V, da Intral, foram observados picos de tensão durante a comutação da senóide para dimmerização. Em condições de condução plena (100%) não há ruído relevante, mas na comutação da senóide observa-se ruídos de alta tensão, como os observados abaixo:

MDO3024 - 12:05:00 09/12/2015

Na parte superior temos a senóide recortada observada nos terminais do mini-dimmer, e abaixo uma ampliação do ruído observado a cada comutação. Note que ele atinge valores acima de 2000V!

Conclusão: Os reatores eletrônicos examinados geram um inadmissível ruído elétrico que, além de exceder amplamente os limites de tensão dos dimmers (250Vca), ainda os submete a um regime de transientes intolerável. Este transientes irão comprometer rapidamente as proteções existentes nos dimmers (filtros RC e varistores) para absorção de picos de tensão, tornando o circuito vulnerável (já que triacs são disparados também por dV/dt em seus terminais). Evidentemente, estas proteções foram projetadas para absorção de picos eventuais, e não para serem submetidos constantemente a eles.

A recomendação, portanto, é não utilizar em hipótese alguma reatores eletrônicos sem que os mesmos sejam previamente homologados pela Dexter. Uma alternativa é o uso de trafos para obtenção de 12V para as lâmpadas halógenas, efetuando-se a dimmerização em seu primário, ou o uso de lâmpadas halógenas conectáveis diretamente à rede elétrica.

Atualmente é disponível com facilidade lâmpadas dicróicas com a tensão de rede elétrica (127 ou 220Vac), dispensando o uso de reatores para seu acionamento. Esta é a melhor solução, com certeza, para acionar lâmpadas dicróicas com o mini-dimmer.

Uma última consideração a respeito destes reatores é que eles são fortes fontes de interferência eletromagnética para receptores de rádio (em especial para as faixas de amplitude modulada) e TV. Já o mini-dimmer e o dimmer de potência Dexter, embora também gere algum ruído elétrico (inerente ao processo de dimmerização por fase de condução), possui uma série de cuidados em seu projeto no intuito de minimizar esta interferência. O ruído elétrico gerado pelos equipamentos Dexter é várias ordens de grandeza inferior aos medidos nestes reatores.

Reatores testados e respectivos resultados:

Modelo	Fabricante	Status	Observações
DIC-50	MG	Não usar	Ruído na faixa de 320Vpp!
50W 220V	Taschibra	Não usar	Ruído na faixa de 100Vpp!
12V 240V	Rio	Não usar	Ruído na faixa de 270Vpp!
THED-50W/220V	Intral	Não usar	Ruído no corte da senóide.
1x50W 220V	Inel	OK	Ruído imperceptível.
TH5011	Trancil	OK	Ruído imperceptível.
ET-E 50A26	Philips	OK	Ruído imperceptível.

Recomendação: Usar lâmpadas dicróicas na tensão de rede elétrica (127Vac ou 220Vac), dispensando o uso de reatores eletrônicos com o Mini-Dimmer.

DEXTER Indústria e Comércio de Equipamentos Eletrônicos Ltda.

Av. Pernambuco, 1328, salas 307,309,310 - Porto Alegre – RS – CEP:90240-001 Fone/Fax: (51)3343-2378 - Fone: (51)3343-5532

E-mail: dexter@dexter.ind.br
Internet: www.dexter.ind.br